GoDigiInfotech: 's Best Tech Institute & Training Center

Join Pune’s most practical and industry-aligned Generative AI Training at GoDigiInfotech. This course is designed for beginners, working professionals, and fresh graduates who want to master generative artificial intelligence and build real-world AI applications.

With expert trainers, hands-on projects, real case studies, and job placement support, this program will prepare you for the booming opportunities in AI-driven industries.

  • Not Satisfied With Trainers? 100% Money Back Gurentee
  • Best Industrial Experts
  • 100% Job Placement
  • Full Days Offline Internship
  • Mock Interviews
  • Resume Building
Best Fullstack Development Course Institute in

Beginner level

No prior experience required to become full-stack developer.

Best Fullstack Development Course Institute in

Study time

You should study approx 2-4 hours every day for better understanding.

Best Fullstack Development Course Institute in

Job Assistance Program

Enrol Today! Take first step towards your dream job.

Our Top Recruiter

What GodigiInfotech is going to teach you?


At GoDigiInfotech, best IT training institute, we teach many things in our Generative AI Course In Pune. We don't just cover the technologies, we also teach each and every topics with deep knowledge. In addition to that we have hands-on projects which are based on real-world applications so you can learn everything required for becoming an expert Generative AI Course In Pune under our experienced guidance.

Module 1:

Python Foundations for AI (Deep Version)

  • Python environment setup
    • Installing Python
    • PATH configuration
    • Using the terminal efficiently
  • Virtual environment basics
    • venv vs conda
    • Creating environments
    • Activating & deactivating
  • Python syntax refresher
    • Indentation rules
    • Variable naming best practices
  • Data types (Deep Coverage)
    • Numbers (int, float)
    • Strings and Unicode handling
    • Lists, tuples, sets, dictionaries
    • Mutable vs immutable types
    • Interning and memory model
  • Control structures
    • Loops
    • Conditional statements
    • Ternary operators
    • List comprehensions
    • Generator expressions
  • Functions (Deep AI-focused view)
    • Defining functions
    • *args and **kwargs
    • Pure vs impure functions
    • Lambda functions
    • Higher-order functions
  • Object-oriented Python
    • Classes, objects
    • Constructors
    • Magic methods
    • Encapsulation
    • Inheritance
    • Polymorphism
    • Composition vs inheritance (important for deep learning model design)
  • Exception handling
    • try/except/else/finally
    • Custom exceptions
    • Common exceptions in ML pipelines
  • Modular Programming 
    • Import system
    • init.py
    • Creating Python packages
  • Python for numerical computing
    • Integers vs floats
    • Float precision
    • Overflow/underflow
  • Time & space complexity
    • Big-O notation basics
    • Optimizing loops
    • List operations complexity
  • File handling
    • Reading/writing text files
    • JSON
    • Pickle
    • CSV
  • Python’s memory model
    • Stack vs heap
    • Object references
    • Garbage collection
  • Writing clean Python
    • PEP8
    • Docstrings
    • Function annotations
  • Using Jupyter Notebook
    • Cells
    • Magic commands
    • Visualizations basics
  • Virtual environment troubleshooting
    • Broken dependencies
    • Path issues
    • Python version conflicts
  • Installing libraries
    • pip install
    • Upgrading pip
    • Handling dependency conflicts
  • Python packaging basics
    • requirements.txt
    • pip freeze
    • Using setup.py
  • Basic debugging
    • print debugging
    • pdb
    • VS Code debugger
  • Type hints
    • Optional, Union, List, Dict
    • Typing in ML projects
  • Functional programming concepts
    • map, filter, reduce
    • Immutability
  • Essential coding skills for AI
    • Vectorized thinking
    • Efficient loops
    • Code structuring for ML experiments

Module 2:

Numpy Mastery (Matrix Math Foundation for LLMs)

  • Numpy Arrays Deep Dive
    • ndarray structure
    • Shape, size, strides
    • Memory layout: C vs Fortran order
    • Data types: float16, float32, float64 (important for GPUs)
  • Array creation
    • arange
    • linspace
    • zeros, ones, full
    • identity, eye
  • Indexing & slicing
    • Basic slicing
    • Boolean indexing
    • Fancy indexing
    • Negative indexing
    • Multidimensional slicing
  • Array reshaping
    • reshape
    • ravel vs flatten
    • expand_dims
    • squeeze
    • Broadcasting rules
  • Mathematical operations
    • Element-wise operations
    • dot vs matmul
    • Norms
    • Log, exp, sqrt
    • Softmax implementation
    • Stable softmax (important in attention layers for Transformers)
  • Linear algebra module
    • matrix inverse
    • eigenvalues and eigenvectors
    • determinants
    • solve linear equations
  • Random number generation
    • rng = np.random.default_rng()
    • Normal distribution
    • Uniform distribution
    • Multivariate Gaussian
  • Aggregations
    • sum, mean, var, std
    • axis operations
    • min/max
    • argmax
  • Vectorization
    • Avoiding loops
    • Vectorizing Python functions
    • Speed comparisons
  • Broadcasting
    • Rules
    • Examples
    • Practical usage in attention scoring
  • Memory efficiency
    • Avoiding unnecessary copies
    • Using views
    • In-place operations
  • Numerically stable operations
    • softmax
    • log-sum-exp
    • small epsilon tricks
  • Practical Numpy for AI
    • Implementing dot products
    • Cosine similarity
    • Euclidean distance
    • Vector norms
  • Working with images
    • Loading
    • Reshaping
    • Normalizing
  • GPU-compatible concepts
    • float16 vs float32
    • Batch operations

Module 3:

Pandas for AI

  • DataFrames
    • Creating
    • Inspecting
    • dtypes
  • Importing data
    • CSV
    • JSON
    • SQL
    • Excel
  • Data cleaning
    • Removing NA
    • Imputing
    • Detecting duplicates
  • Data preprocessing
    • Encoding categorical variables
    • Label encoding
    • One-hot encoding
  • Feature scaling
    • MinMaxScaler
    • StandardScaler
  • Aggregations
    • groupby
    • pivot tables
    • multi-index
  • Merging & joining
    • inner, left, right, outer joins
  • Text columns
    • string operations
    • regex filtering
  • Time series
    • converting to datetime
    • resampling
  • Data exporting
    • Save to CSV
    • Save to JSON

Module 4:

Data Visualization for AI

  • Matplotlib deep usage
  • Subplots
  • Styling
  • Histograms
  • Scatter plots
  • Pairplots
  • Density plots
  • Heatmaps
  • Boxplots
  • Trend lines
  • Correlation matrix
  • Visualizing distributions
  • Understanding skewness
  • Plotting confusion matrices
  • Plotting learning curves
  • Visualizing embeddings (PCA, t-SNE)

Module 5:

ML Foundations

  • ML pipeline
  • Bias/variance
  • Overfitting
  • Regularization
  • Loss functions
  • Convex vs non-convex optimization
  • Gradient descent
  • Stochastic GD
  • Mini-batch GD
  • Hyperparameters
  • Choosing metrics
  • Cross-validation
  • Train/test split
  • Model selection
  • Feature engineering
  • Normalization
  • Standardization
  • Outlier handling
  • ML evaluation workflow
  • Pitfalls in ML experiments

Programming Languages & Tools Covered in Generative AI Course In Pune

  • Python - Generative AI Course In Pune
  • Javascript - Generative AI Course In Pune
  • SQL - Generative AI Course In Pune
  • ChatGPT - Generative AI Course In Pune
  • Tensorflow - Generative AI Course In Pune
  • NumvPy - Generative AI Course In Pune
  • Google Gemini - Generative AI Course In Pune
  • LangChain - Generative AI Course In Pune

Covered Projects

Project 1

Customer Relation Module/ Content management System

  • Departement Management
  • Role Management
  • User Management
  • Prospect Management
  • Task Management
  • API Integration
  • Dynamic Dashboard
  • Reports System
  • GIT & GIT Hub

Project 2

E-Commerce Website with Advanced search Technique & Live Tracking

  • Products Management
  • Dynamic Filters
  • User Management
  • Cart Management
  • Orders Management
  • API Integration
  • Dynamic Dashboard
  • Reports System
  • GIT & GIT Hub

Get Daily Job & Internship Updates. Join Our WhatsApp Channel. Click here to join.